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LETTER TO THE EDITOR 

Lie and Noether symmetries and a result of Logan 

G Thompson 
Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada 
N2L 3G1 

Received 13 November 1985 

Abstract. The notions of Lie and conformal invariance symmetry for a regular second-order 
equation field are shown to be essentially identical. It is pointed out that the way in which 
conformal invariance symmetries are traditionally defined is not invariant and that this 
leads to difficulties in interpreting a recent result of Logan. However, the introduction of 
coordinate-free geometrical apparatus leads to a simple proof of Logan's result and 
interpretation of the examples considered by him. 

Recently, there appeared in this journal a theorem and its converse which attempted 
to clarify the distinction between two kinds of symmetry which can be defined in a 
regular particle-type variational problem (Logan 1985). Unfortunately one of these 
kinds of symmetries, known as a conformal invariance symmetry, is not well defined. 
It depends on the choice of a function or functions, the vanishing of which determines 
the differential equation(s). I shall argue in this letter that there is a well defined 
invariant concept of conformal invariance symmetry, but whose definition appears to 
take a rather different form. Given this definition and some other fairly standard facts 
from Lagrangian theory, Logan's result amounts to the fact that every Noether symmetry 
of a variational problem is a Lie symmetry. The converse, however, does not hold 
and Logan's result attempts to throw some light on the question of when a Lie symmetry 
is Noether. I shall give two necessary and sufficient conditions for this and use them 
to explain the two examples considered by Logan. 

Another related issue is the perhaps somewhat paradoxical fact that when Euler- 
Lagrange equations are considered from the point of view of the theory of jet bundles 
(Sniatycki 1970, Crampin et al 1984), they are often formulated as a vector field or 
differential system on the $rst-order jet bundle, though the Euler-Lagrange equations 
are themselves second order. 

I shall use modern geometric apparatus which I hope complements the classical 
analytical methods and serves to focus some of the issues more sharply. The notation 
agrees with that used in Crampin et a1 (1984). In particular, I denote the interior 
product of a p-form a by a vector field X by X J a  and the Lie derivative of a along 

In Crampin et a1 (1984), second-order equation fields were discussed in terms of 
jet bundles. It is worthwhile to review and extend the remarks here. Suppose that an 
m-manifold M is the configuration space of some Lagrangian system. Then it is well 
known that time-dependent Lagrangian theory leads to a vector field-the Euler- 
Lagrange field on R x TM which is the evolution space of the system. Now R x TM 
can be identified with J'([w, M ) ,  the bundle of 1-jets of local smooth curves on M. If 

X by Lxa. 

0305-4470/86/030105 + 06$02.50 @ 1986 The Institute of Physics L105 



L106 Letter to the Editor 

coordinates ( f ,  x i )  are chosen for R x M, there are naturally induced coordinates 
(t, x', U') for J'(R, M ) .  Given the Lagrangian L :  J'(R, M )  + R, the Euler-Lagrange 
equations associated with L may be considered in two different, but entirely equivalent 
ways; firstly, as the second-order equation field 

a a a r =-+ui -+r i l  
a t  ax' au 

( a  Ud'fuJ) -' (5 - atau-' - au' ax' 

(where the r' are the Euler-Lagrange expressions) i.e. explicitly 

rI= - aL aL d-) a' L 

and secondly, as the module of 1-forms generated by dx '  - U' dt  and d u ' - r '  dt. From 
the first point of view, a solution to the Euler-Lagrange equations is simply an integral 
curve of r and from the second, an integral manifold of a 2m-dimensional Pfaffian 
module subject also to the transversality condition d t  # 0. 

The preceding discussion is of course not limited to Euler-Lagrange fields. If the 
quantities r' were simply functions of t, x'  and U' then r would correspond to an 
arbitrary second-order equation field. One might well ask why second-order equation 
fields give rise to vector fields and Pfaffian modules on the jh t -order  jet bundle 
J'(R, M ) .  The reason is the following. A (determined) system of second-order ordinary 
differential equations actually determines, at least locally, a codimension rn submani- 
fold I: of J2(R,  M ) ,  the second-order jet bundle of local smooth curves on M. Given 
the coordinates (t, x ')  on R x M, there are naturally induced coordinates ( t ,  XI, U', U') 
on J2(R, M ) .  Z is determined locally by the vanishing of the rn quantities U' -r'. 
Actually, I am assuming here that the second-order system is regular, that is to say, 
that Z is transverse to the fibration J2(R, M ) +  J'(R, M ) .  If this is so, then by the 
implicit function theorem, the equations determining Z may be solved for the fibre 
coordinates of J'(R, M )  over J ' ( R ,  M ) ,  namely the U'. ( I  use the term 'regular' 
advisedly here, because in the case where the second system is actually a Euler-Lagrange 
system, regularity is equivalent to the invertibility of the matrices a2L/au '  au', which 
is just the usual notion of regularity for a Euler-Lagrange system.) A regular second- 
order system is, then, precisely a section of J2(R, M )  over J'(R, M ) .  Thus Z may be 
identified via this section with J'(R, M ) .  Moreover, the Pfaffian system {dx'-  
U' dt, du'  - U' dt} restricted to I:, integral curves of which determine solutions of the 
second-order system, descends to the Pfaffian system {dx' - U' dt, du '  - r' dt} on 
J ' ( R ,  M ) .  

I shall now show how the preceding remarks serve to clarify the distinction between 
two kinds of symmetry which may be defined for regular second-order equation fields. 
First of all, however, it is necessary to recall the prolongation construction for vector 
fields. If X = T a /a t  + 5 ialax' is a vector field on R x M, then there is a unique vector 
field X'" on J'(R, M )  (the rth-order jet bundle), characterised by the property that 
it projects onto X and preserves the rth-order contact module C l ( r ) ,  in the sense that 
L x ( d l ( ' ) c  a('). For r = 1 and 2 respectively, the cases of interest here, one has 
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where 

and likewise for i and i. Of the two notions of symmetry which I referred to above, 
the first is a Lie symmetry which is a vector field X on R x M such that [r, X"'] = Ar 
(for some function A on J ' ( R ,  M )  which may actually be shown to be i). Equivalently, 
X ( ' )  stabilises the exterior differential system 9 generated by the Pfaffian forms 
{dx ' -U'  dt, du i  -r' dt}; that is to say L,+9c 9 where 9 is the algebraic ideal 
generated by {dx'- U' dt, du i  -r' dt} and their exterior derivatives. This latter 
definition is both easy to compute with and generalises easily to systems of partial 
differential equations. 

The second kind of symmetry I wish to consider is what I shall call a conformal 
invariance symmetry. Suppose that the submanifold Z of J2([w, M )  is determined by 
the vanishing of the m functions F ' ,  . , . , F". Then a vector field X on R x M is said 
to be a conformal invariance symmetry if the zero locus of X'"F', . . . , X("F" coincides 
with Z. More geometrically and invariantly, a conformal invariance symmetry is 
precisely a vector field of the form X ( 2 )  which is tangential to X. The flow of X") 
therefore determines a 1-parameter group of diffeomorphisms of 2, or, less precisely, 
the flow of X'" leaves Z invariant. 

The definition of conformal invariance symmetry just given should be compared 
to the manifestly non-invariant definitions of, for example, Ames (1972), Bluman and 
Cole (1974) and Logan (1985). These authors define a conformal invariance symmetry 
X as one which satisfies X("F' = af F', where Z is determined by the conditions F' = 0 
and the a; are real-valued functions on J 2 ( R ,  M ) .  To see the difficulties caused by 
this definition consider, for example, the equation x = 0 as a codimension one submani- 
fold of J 2 ( R ,  R). Then using coordinates (t, x, U, U), C is determined by the condition 
U = 0 and it is easy to see that X = t a la r  + U a/au is a conformal invariance symmetry 
according to the definition given here. Indeed, this is apparent from the fact that 
X ( 2 )  = t a l a r  + U a / a u  - 2 0  a/&. However, Z is equally well specified by the condition 
u3 + U = 0 and according to the alternative definition, X would not qualify as a conformal 
invariance symmetry. 

Proposition 1 .  X is a Lie symmetry of a regular second-order equation iff it is a 
conformal invariance symmetry. 

Proof: Suppose that the codimension m submanifold Z of J2(R,  M )  is determined by 
the vanishing of the m functions F' ,  . . . , F" where F' = U' -Ti, (U') are coordinates 
of the fibres of J 2 ( R ,  M )  over J ' ( R ,  M )  and the r' are functions of t ,  x' and U', (t, xi, U') 
being a coordinate system on J ' ( R ,  M ) .  (This description of C is possible because Z 
is assumed to be regular.) Let X = T a / a t  + 5' a/ax' be a vector field on R x M. Then 
by direct calculation one finds 

... 
(1) x ( ~ ) F '  = 6' -2*' - - x(1jri 

where X " )  on J ' ( R ,  M )  is abusively identified with a vector field on J 2 ( R ,  M )  (this 
abuse is permissible because the ri are functions on J ' ( R ,  M ) ) .  

Now one finds that X is a Lie symmetry iff 
.. , 

( 2 )  x ( l ) r i = t ' - 2 + r ' - + '  
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(One computes [r, XI  and sees that [r, XI  = AT iff A = i and (2) is satisfied.) Thus, 
if X is a Lie symmetry 

(3) x ( ~ ) J z ~  = 2+(r '  - = 

and hence X is a conformal invariance symmetry. Conversely, if X is a conformal 
invariance symmetry, then on Z, X'*)F' = O  and hence since U' = f i ,  (1) implies that 
X is a Lie symmetry. 

The import of this proposition and the remarks preceding it is that a conformal 
invariance symmetry is much more naturally viewed as a symmetry of the second-order 
equation field r or, equivalently, as a symmetry of the associated exterior differential 
system determined by the annihilator of r. It is worthwhile to note that these consider- 
ations apply to arbitrary (regular) second-order equations and not just Euler-Lagrange 
equations. By contrast, I shall consider the next Noether symmetries which are only 
defined for Euler-Lagrange systems. 

Let L: J'(R, M )  + R be a regular Lagrangian and denote the corresponding Euler- 
Lagrange field by rL. Let 0, denote the Cartan l-form associated with L. In fact, 
choosing coordinates (x i )  on M and denoting the natural coordinate on R by t and 
the induced coordinates on the fibres of J ' (R,  M )  over R x  M by ( u i ) ,  OL= 
L dt+(dL/du')(dx'- u i  dt).  Evidently there is a bi-unique correspondence between 
(not necessarily regular) Lagrangians and Cartan forms; indeed, this correspondence 
is even an isomorphism of real vector spaces. (For more on the approach to Euler- 
Lagrange equations using the Cartan form, see Crampin (1977), Sarlet and Cantrijn 
(1982), Prince (1983) and Crampin et a1 (1984).) rL is related to 0, by the conditions 

(r, 0,) = L 

TJdOL=O. 
(4) 

(5) 

r also satisfies r( t )  = 1 and this and (5) characterise r uniquely. 

for some function f :  J'(R, M )  + R 
A Noether symmetry may now be defined as a vector field X on R x M such that 

Lx(l)L dt  = dJ: ( 6 )  

It is appropriate to refer to a vector field X satisfying ( 6 )  as a Noether symmetry, 
since it is precisely the kind of symmetry considered by Noether in her seminal paper 
(Noether 1918). Logan (1985) refers to the action L d t  (or actually the associated 
functional) as being 'divergent invariant'. From ( 6 )  it easily follows that f must be a 
function on R x M and if X = T a l a r +  5' alax' where T is a function of t only, that f 
is a function of t only. It is well known that ( 6 )  implies that 

Lx(l)@L = df mod a(') (7) 
where a"' is the module of contact l-forms on J ' (R,  M )  (see, for example, Crampin 
1977). In view of (7), some authors, for example Prince (1983), have proposed to 
weaken the definition of Noether symmetry to the following condition 

LX(1)L d t  = df mod a('). (8) 
However, this apparent generalisation is illusory because it still remains true that f is 
a function on R x M and hence one can deduce that (8) implies (6). Indeed, this 
follows from part (ii) of the next proposition. 
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Proposition 2. 
(i)  If X = T a l a ?  + t i  a/axi is a vector field on R x M, &WO, = 

L i = i  iff &wO=df: 

where Xv is the vertical lift of X. 

(ii) X is a Noether symmetry, i.e. &(l)L d t  = df for somef: R x M + R, iff X( ' )L+ 

(iii) If X is a Noether symmetry, the corresponding first integral is f- LT - XvL 

Proof: (i)  I quote from Crampin et a1 (1984) where it is shown that OL = L dt  + S 0 dL 
where S is the fundamental 1-1 tensor on J ' (R,  M )  whose local expression is a/auiO 

&(1)0~  = &cl)( L dt  + dL 0 S )  

(dx'- ui dt).  Thus 

= X ' " L ~ ~ + L ~ T + ~ ( X ' ' ' L ~  S )+dLo  &I)S 

=X'"Ldt+  L d ~ + d ( x ' ' ) L )  0 S + i ( d L o  S )  

= Ox'"L+ OT, 

(using &(lis = is)  

= OX(l)L++L. 

(ii) Since &( l )Ldt=X'"Ldt+  L ~ T ,  it is clear that if X is a Noether symmetry, 
X"'L+ L i  =j Next, note that by (i) X( ' )L+ L i = f  iff &(l)OL= Of  which is easily 
seen to be equivalent to &wOL=df: Finally, suppose that &(l)OL=df: I shall show 
that X is a Noether symmetry. Now 

L,(l)S 0 dL = i s  0 dL+ S 0 d(X'"L) 

= i S  0 dL + S 0 d(f - L i )  

= i s  0 dL - i s  0 dL+ S 0 df- LS 0 d i  

= O  

(since S annihilates l-forms semibasic with respect to the fibration J'(R, M )  + R x M ) .  
&wL dt  = 0 is now immediate from the fact that OL= L dt  + S 0 dL. 

(5) The vertical lift Xv of a vector field X on R x M to J ' (R,  M )  is the unique 
vector field obtained by applying S to any vector field on J'(R, M )  which is projectable 
to X. In particular, S(X'")=Xv (see Crampin et a1 1984). By (ii) one has that 
&(U@,= df and so X'l) JdO, = d(f-(X'", 0,)). Hence the first integral associated 
with X'l), as can be seen by applying r to each side of the last equation, isf-(X'", 0,) 
which is easily seen to be f - L T - X ~ L ,  using the definition of OL and the fact that 
S(X(1)) = xv. 

(ii) of proposition 2 was derived by Rund (1972), but by rather different means. 
The following result is essentially Logan's theorem (Logan 1985). 

Corollary. If X is a Noether symmetry of the Euler-Lagrange equation rL, then it is 
a Lie symmetry of r,. 
Proof: Computing the Lie derivative along X'') of each side of ( 5 )  and using the fact 
that the Lie derivative operator is a derivation one obtains 

[ X"), rL] J d e L  + r 1 &cl) dOL = 0. 
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But if X is Noether symmetry, then proposition 2(ii) implies that & c l )  dOL= 0 and 
hence [ X ‘ ” ,  r,] is characteristic to dOL and so must be a multiple of rL, i.e. be a Lie 
symmetry. 

The converse to the corollary does not hold, so that not every Lie symmetry is Noether. 
As to the converse of Logan’s theorem, it is not at all clear that any invariant principle 
underlies it. On the other hand, if X is a Lie symmetry and one wishes to know 
whether it is Noether, (ii) of proposition 2 provides very simple necessary and sufficient 
tests. For example, of the two variational problems considered by Logan, the second (s t2(fu2-;x6) dt--ihe Euler-Fowler problem) admits X = t a/x - i x  a/ax as a Lie 
symmetry. One may easily check that X“’L = - L  so that X is a Noether symmetry. 
In the first problem (5 ( x u 3 +  ~ t - ” ~ )  dt),  X = d / a t + ; x  a/ax is a Lie symmetry and one 
easily finds that L,(l)L d t  = $ L  dt  so that X is not a Noether symmetry. This yields 
an explanation of the different phenomena occurring in these two problems which 
surely is at least as convincing as Logan’s. 
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